4.7 Article

Enhancement of CO2 Uptake and Selectivity in a Metal-Organic Framework by the Incorporation of Thiophene Functionality

期刊

INORGANIC CHEMISTRY
卷 57, 期 9, 页码 5074-5082

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.8b00138

关键词

-

资金

  1. EPSRC
  2. ERC
  3. University of Manchester
  4. Russian Science Foundation [14-23-00013]
  5. Federal Agency for Scientific Organizations
  6. Russian Ministry of Science and Education [14.Z50.31.0006]
  7. DOE Office of Science User Facility [DE-AC02-05CH11231]
  8. Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001015]
  9. Russian Science Foundation [17-23-00006] Funding Source: Russian Science Foundation
  10. EPSRC [EP/I020942/1, EP/P001386/1, EP/I011870/2] Funding Source: UKRI

向作者/读者索取更多资源

The complex [Zn-2(tdc)(2)dabco] (H(2)tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N-2) selectivity compared to the nonthiophene analogue [Zn-2(bdc)(2)dabco] (H(2)bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn-2(tdc)(2)dabco] is 67.4 cm(3).g(-1) (13.2 wt %) at 298 K and 153 cm(3).g(-1) (30.0 wt %) at 273 K. For [Zn-2(bdc)(2)dabco], the equivalent values are 46 cm(3).g(-1) (9.0 wt %) and 122 cm(3).g(-1) (23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn-2(tdc)(2)dabco] at zero coverage is low (23.65 kJmol(-1)), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N-2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn-2(tdc)(2)dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn-2(tdc)(2)dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn-2(tdc)(2)dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据