4.5 Article

DNMT3A controls miR-200b in cardiac fibroblast autophagy and cardiac fibrosis

期刊

INFLAMMATION RESEARCH
卷 67, 期 8, 页码 681-690

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00011-018-1159-2

关键词

Cardiac fibrosis; Cardiac fibroblast; DNMT3A; miR-200b; Autophagy

资金

  1. National Nature Scientific Foundation of China [81700212, 81570295]
  2. Natural Science Foundation of Anhui Provincial Education Department [KJ2017A168]
  3. Natural Science Foundation of Anhui Provincial [1808085MH231]

向作者/读者索取更多资源

Regulation of microRNA gene expression by DNA methylation may represent a key mechanism to drive cardiac fibrosis progression. Cardiac fibroblast autophagy is the primary source of cardiac fibrosis, but the mechanisms underlying this process are incompletely understood. Here we found that DNMT3A suppression of the microRNA-200b (miR-200b) through pathway leads to cardiac fibroblast autophagy in cardiac fibrosis. To understand the impact of DNMT3A on miR-200b at cardiac fibrosis, the rat cardiac fibrosis model was established via the abdominal aortic coarctation. Cardiac fibroblasts (CFs) were harvested from SD neonate rats and cultured. The expression of DNMT3A, miR-200b, collagen I was measured by western blotting, immunohistochemistry and qRT-PCR. Gain- or loss-of-function approaches were used to manipulate DNMT3A and miR-200b. DNMT3A level was upregulated and negatively correlated with miR-200b expression in fibrosis tissues and cardiac fibroblast. We found that autophagy was activated by miR-200b inhibitor and inactivated by miR-200b mimic in the rat cardiac fibroblast. Knockdown of DNMT3A notably increased the expression of miR-200b. Taken together, these findings indicate that DNMT3A regulation of miR-200b controls cardiac fibroblast autophagy during cardiac fibrosis and provide a basis for the development of therapies for cardiac fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据