4.7 Article

The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 116, 期 -, 页码 97-108

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.indcrop.2018.02.022

关键词

Microfibrillated cellulose; Surface modification; Biopolyamide; Nanocomposite; Melt blending; Dynamic mechanical analysis

资金

  1. Polish National Science Centre [DEC-2011/01/M/ST8/06834]
  2. VEGA [02/0010/18]

向作者/读者索取更多资源

Microfibrillated cellulose (MFC) has recently been identified as an innovative product of wood and agriculture industry with potential applications as reinforcement and carrier for functional properties of polymer composite materials, such as improved barrier and optical properties. The widespread commercial application of MFC in polymer technology still requires the development of new methods of MFC surface modifications in order to provide stong interfacial adhesion and good dispersibility of additive in polymer matrix. In this work micro fibrillated cellulose was modified by acid chlorides arranged in a homologous series that showed high efficiency in changing the surface properties of the material. The modified MFC displayed hydrophobic character combined with preserved fibrillar morphology and high crystallinity. Chemical modification of MFC was assessed by Fourier transformed infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses. Despite the fact that the reactivity of acid chloride slightly decreased with increasing chain length the total effect on MFC wetting with water was most pronounced for the modifier with the longest alkyl chain. Completely bio-based engineering nanocomposites of biopolyamide 4.10 (PA4.10) and surface modified MFC were prepared by melt blending. Structural, morphological and thermomechanical analysis by scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic mechanical analysis (DMA) methods evidenced clear dependence of composite performance on the length of alkyl chain attached to the MFC surface. The modification of MFC by hexanoyl chloride produced nanofiller with good dispersibility in PA4.10 matrix and was favorable in terms of dynamic mechanical properties of composites. While PA4.10 composites containing MFC functionalized by longer alkyl chains (more than 10 carbon atoms) showed a decrease of storage modulus due to insufficient interfacial interactions or plasticization effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据