4.6 Article

Ternary Composite of Polyaniline Graphene and TiO2 as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 57, 期 19, 页码 6705-6713

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.7b05314

关键词

-

资金

  1. Priority Research Centers Program through the National Research Foundation of Korea - Ministry of Education in Korea [2014R1A6A1031189]

向作者/读者索取更多资源

Microbial fuel cells (MFCs) are a potential sustainable energy resource by converting organic pollutants in wastewater to clean energy. The performance of MFCs is influenced directly by the electrode material. In this study, a ternary PANI-TiO2-GN nanocomposite was used successfully to improve the performance of both the cathode and anode MFC. The PANI-TiO2-GN catalyst exhibited better oxygen reduction reaction activity in the cathode, particularly as a superior catalyst for improved extracellular electron transfer to the anode. This behavior was attributed to the good electronic conductivity, long-term stability, and durability of the composite. The immobilization of bacteria and catalyst matrix in the anode facilitated more extracellular electron transfer (EET) to the anode, which further improved the performance of the MFCs. The application of PANI-TiO2-GN as a bifunctional catalyst in both the cathode and anode helped decrease the cost of MFCs, making it more practical.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据