4.4 Article

Effect of external periodic signals and electromagnetic radiation on autaptic regulation of neuronal firing

期刊

IET SYSTEMS BIOLOGY
卷 12, 期 4, 页码 177-184

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-syb.2017.0069

关键词

-

资金

  1. National Natural Science Foundation of China [11775091, 11474117]

向作者/读者索取更多资源

An improved Hindmarsh-Rose (HR) neuron model, where the memristor is a bridge between membrane potential and magnetic flux, can be used to investigate the effect of periodic signals on autaptic regulation of neurons under electromagnetic radiation. Based on the improved HR model driven by periodic high-low-frequency current and electromagnetic radiation, the responses of electrical autaptic regulation with diverse high-low-frequency signals are investigated using bifurcation analysis. It is found that the electrical modes of neurons are determined by the selecting parameters of both periodic high and low-frequency current and electromagnetic radiation, and the Hamiltonian energy depends on the neuronal firing modes. The effects of Gaussian white noise on the membrane potential are discussed using numerical simulations. It is demonstrated that external high-low-frequency stimulus plays a significant role in the autaptic regulation of neural firing mode, and the electrical mode of neurons can be affected by the angular frequency of both high-low-frequency forcing current and electromagnetic radiation. The mechanism of neuronal firing regulated by high-low-frequency signal and electromagnetic radiation discussed here could be applied to research neuronal networks and synchronisation modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据