4.4 Article

The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

期刊

EARTH SURFACE DYNAMICS
卷 2, 期 2, 页码 469-480

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/esurf-2-469-2014

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Atlantic Innovation Fund
  3. Nortek

向作者/读者索取更多资源

The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI approximate to 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from phi approximate to 41 to 49 degrees, while the round to angular gravel was characterized as phi = 33 degrees. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to phi = 38 degrees. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a waterfilled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31 degrees and more, being >= 7 degrees steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据