4.4 Article

Novel application of integral-tilt-derivative controller for performance evaluation of load frequency control of interconnected power system

期刊

IET GENERATION TRANSMISSION & DISTRIBUTION
卷 12, 期 14, 页码 3550-3560

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-gtd.2018.0345

关键词

-

向作者/读者索取更多资源

The primary aim of load frequency control (LFC) is to provide a good quality of electrical power to the consumers within a prescribed limit of frequency and scheduled tie-line power deviation. To achieve this objective, LFC needs highly efficient and intelligent control mechanism. Subsequently, here, a novel integral-tilt-derivative (I-TD) controller, fine-tuned by a powerful heuristic optimisation technique [called as water cycle algorithm (WCA)], is proposed for the LFC study of a two-area interconnected thermal-hydro-nuclear generating units. The studied system involves non-linearities like generation rate constraints, governor dead band, and boiler dynamics. To explore the effectiveness of the proposed controller, dynamic responses of the studied system, as obtained using I-TD controller, are compared to those yielded by other controllers such as tilt-integral-derivative and conventional proportional-integral-derivative controllers. The investigation demonstrates that the proposed I-TD controller delivers better performance in comparison to the other counterparts. Furthermore, sensitivity analysis is carried out to show robustness of the WCA tuned proposed I-TD controller by varying system parameters and loading condition. It is perceived that the proposed I-TD controller is robust and offers better transient response under varying operating conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据