4.7 Article

Model Predictive Control for Lithium-Ion Battery Optimal Charging

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 23, 期 2, 页码 947-957

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2018.2798930

关键词

Battery fast charging; Lithium-ion battery; model predictive control (MPC); state-of-charge (SOC); state-of-health (SOH)

资金

  1. Australian Research Council [FT100100538]
  2. Australian Research Council [FT100100538] Funding Source: Australian Research Council

向作者/读者索取更多资源

Charging time and lifetime are important performances for lithium-ion (Li-ion) batteries, but are often competing objectives for charging operations. Model-based charging controls are challenging due to the complicated battery system structure that is composed of nonlinear partial differential equations and exhibits multiple time-scales. This paper proposes a new methodology for battery charging control enabling an optimal tradeoff between the charging time and battery state-of-health (SOH). Using recently developed model reduction approaches, a physics-based low-order battery model is first proposed and used to formulate a model-based charging strategy. The optimal fast charging problem is formulated in the framework of tracking model predictive control (MPC). This directly considers the tracking performance for provided state-of-charge and SOH references, and explicitly addresses constraints imposed on input current and battery internal state. The capability of this proposed charging strategy is demonstrated via simulations to be effective in tracking the desirable SOH trajectories. By comparing with the constant-current constant-voltage charging protocol, the MPC-based charging appears promising in terms of both the charging time and SOH. In addition, this obtained charging strategy is practical for real-time implementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据