4.7 Article Proceedings Paper

3D Genome Reconstruction with ShRec3D+and Hi-C Data

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TCBB.2016.2535372

关键词

3D genome reconstruction; interaction frequencies; multi-dimensional scaling (MDS); a conversion factor; a distance weighted graph

资金

  1. Project for the National Key Technology RD Program [2011BAC12B0304]
  2. Scientific Plan of Beijing Municipal Commission of Education [JC002011200903]

向作者/读者索取更多资源

Hi-C technology, a chromosome conformation capture (3C) based method, has been developed to capture genome-wide interactions at a given resolution. The next challenge is to reconstruct 3D structure of genome from the 3C-derived data computationally. Several existing methods have been proposed to obtain a consensus structure or ensemble structures. These methods can be categorized as probabilistic models or restraint-based models. In this paper, we propose a method, named ShRec3D+, to infer a consensus 3D structure of a genome from Hi-C data. The method is a two-step algorithm which is based on ChromSDE and ShRec3D methods. First, correct the conversion factor by golden section search for converting interaction frequency data to a distance weighted graph. Second, apply shortest-path algorithm and multi-dimensional scaling (MDS) algorithm to compute the 3D coordinates of a set of genomic loci from the distance graph. We validate ShRec3DI accuracy on both simulation data and publicly Hi-C data. Our test results indicate that our method successfully corrects the parameter with a given resolution, is more accurate than ShRec3D, and is more efficient and robust than ChromSDE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据