4.7 Article

A Copula-Based Granger Causality Measure for the Analysis of Neural Spike Train Data

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TCBB.2014.2388311

关键词

Granger causality; copula; contour integration; multielectrode recordings; neural spike train analysis

资金

  1. National Key Basic Research Program of China [2014CB846101]
  2. National Natural Science Foundation of China [31125014]

向作者/读者索取更多资源

In systems neuroscience, it is becoming increasingly common to record the activity of hundreds of neurons simultaneously via electrode arrays. The ability to accurately measure the causal interactions among multiple neurons in the brain is crucial to understanding how neurons work in concert to generate specific brain functions. The development of new statistical methods for assessing causal influence between spike trains is still an active field of neuroscience research. Here, we suggest a copula-based Granger causality measure for the analysis of neural spike train data. This method is built upon our recent work on copula Granger causality for the analysis of continuous-valued time series by extending it to point-process neural spike train data. The proposed method is therefore able to reveal nonlinear and high-order causality in the spike trains while retaining all the computational advantages such as model-free, efficient estimation, and variability assessment of Granger causality. The performance of our algorithm can be further boosted with time-reversed data. Our method performed well on extensive simulations, and was then demonstrated on neural activity simultaneously recorded from primary visual cortex of a monkey performing a contour detection task.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据