4.7 Article

UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 17, 期 8, 页码 5092-5106

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2018.2838134

关键词

Wireless power transfer (WPT); unmanned aerial vehicle (UAV); trajectory optimization; energy fairness

资金

  1. National University of Singapore [R-263-000-D12-114]
  2. National Natural Science Foundation of China [61628103]

向作者/读者索取更多资源

This paper studies a new unmanned aerial vehicle (UAV)-enabled wireless power transfer system, where a UAV-mounted mobile energy transmitter is dispatched to deliver wireless energy to a set of energy receivers (ERs) at known locations on the ground. We investigate how the UAV should optimally exploit its mobility via trajectory design to maximize the amount of energy transferred to all ERs during a finite charging period. First, we consider the maximization of the sum energy received by all ERs by optimizing the UAV's trajectory subject to its maximum speed constraint. Although this problem is non-convex, we obtain its optimal solution, which shows that the UAV should hover at one single fixed location during the whole charging period. However, the sum-energy maximization incurs a near-far fairness issue, where the received energy by the ERs varies significantly with their distances to the UAV's optimal hovering location. To overcome this issue, we consider a different problem to maximize the minimum received energy among all ERs, which, however, is more challenging to solve than the sum-energy maximization. To tackle this problem, we first consider an ideal case by ignoring the UAV's maximum speed constraint, and show that the relaxed problem can be optimally solved via the Lagrange dual method. The obtained trajectory solution implies that the UAV should hover over a set of fixed locations with optimal hovering time allocations among them. Then, for the general case with the UAV's maximum speed constraint considered, we propose a new successive hover-and-fly trajectory motivated by the optimal trajectory in the ideal case and obtain efficient trajectory designs by applying the successive convex programing optimization technique. Finally, numerical results are provided to evaluate the performance of the proposed designs under different setups, as compared with benchmark schemes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据