4.8 Article

High-Frequency EMI Attenuation at Source With the Auxiliary Commutated Pole Inverter

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 33, 期 7, 页码 5660-5676

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2017.2743041

关键词

Auxiliary commutated pole inverter (ACPI); electromagnetic interference (EMI); fixed timing; frequency response; more electric aircraft (MEA); soft switching; variable timing

向作者/读者索取更多资源

Fast-switching power converters are a key enabling technology for the more electric aircraft (MEA), but the generated electromagnetic interference (EMI) poses significant challenges to the electrification effort. To meet the stringent aerospace EMI standards, passive filters are commonly employed, despite the weight and size constraints imposed by the MEA. Alternatively, the EMI source, i.e., the high dv/dt and di/dt slew rates, can be addressed through waveform-shaping techniques. For example, while most soft-switching converters can reduce switching loss, they do so by switching the semiconductor devices in a slower and smoother manner, resulting in the attenuation of high-frequency harmonics. This paper examines the auxiliary commutated pole inverter (ACPI) topology, and its first contribution is the attenuation of the highfrequency content of its EMI source, that is, the output voltage, in a predictable manner, through the active control of the resonant circuit. This is achieved by first, discussing the time-domain characteristics of trapezoidal and S-shaped pulse-trains that lead to attenuated high-frequency harmonic content, and second, by analyzing the equivalent LC circuit of the ACPI. The design of the inverter is then focused on the active control of the resonant parameters, for a predetermined and enhanced output voltage highfrequency response. The second contribution of this paper is the comparison of the EMI performance of hard switching and of three soft-switching modes, fixed-timing control, variable-timing control, and capacitive turn-OFFs, and how this informs important metrics such as power efficiency, current stress, and implementation complexity. Finally, the third contribution is on the trade-offs that arise when the primary design goal is enhanced EMI performance as opposed to switching loss reduction. A 5-kW, 3-phase ACPI prototype is used for validating the high-frequency content attenuation at source. It is shown that the ACPI can achieve a 37 dB harmonic attenuation of its output voltage at 4 MHz, compared to a hard-switched inverter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据