4.8 Article

Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2018.2858249

关键词

Low-rank matrix learning; nonconvex regularization; proximal algorithm; parallel algorithm; matrix completion

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region [614513]
  2. Microsoft Research Asia
  3. 4Paradigm

向作者/读者索取更多资源

Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is much more challenging. Recent state-of-the-art requires an expensive full SVD in each iteration. In this paper, we show that for many commonly-used nonconvex low-rank regularizers, the singular values obtained from the proximal operator can be automatically threshold. This allows the proximal operator to be efficiently approximated by the power method. We then develop a fast proximal algorithm and its accelerated variant with inexact proximal step. It can be guaranteed that the squared distance between consecutive iterates converges at a rate of O(1/T), where T is the number of iterations. Furthermore, we show the proposed algorithm can be parallelized, and the resultant algorithm achieves nearly linear speedup w.r.t. the number of threads. Extensive experiments are performed on matrix completion and robust principal component analysis. Significant speedup over the state-of-the-art is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据