4.8 Article

Packing Convolutional Neural Networks in the Frequency Domain

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2018.2857824

关键词

CNN compression; discrete cosine transform; frequency domain speed-up; DCT bases

资金

  1. National Natural Science Foundation of China [NSFC 61375026, 2015BAF15B00]
  2. Australian Research Council [FL-170100117, DE-180101438, DP-180103424, LP-150100671]

向作者/读者索取更多资源

Deep convolutional neural networks (CNNs) are successfully used in a number of applications. However, their storage and computational requirements have largely prevented their widespread use on mobile devices. Here we present a series of approaches for compressing and speeding up CNNs in the frequency domain, which focuses not only on smaller weights but on all the weights and their underlying connections. By treating convolution filters as images, we decompose their representations in the frequency domain as common parts (i.e., cluster centers) shared by other similar filters and their individual private parts (i.e., individual residuals). A large number of low-energy frequency coefficients in both parts can be discarded to produce high compression without significantly compression romising accuracy. Furthermore, we explore a data-driven method for removing redundancies in both spatial and frequency domains, which allows us to discard more useless weights by keeping similar accuracies. After obtaining the optimal sparse CNN in the frequency domain, we relax the computational burden of convolution operations in CNNs by linearly combining the convolution responses of discrete cosine transform (DCT) bases. The compression and speed-up ratios of the proposed algorithm are thoroughly analyzed and evaluated on benchmark image datasets to demonstrate its superiority over state-of-the-art methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据