3.8 Proceedings Paper

Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

出版社

ELSEVIER SCIENCE BV
DOI: 10.1109/ICMLA.2015.98

关键词

Robot control; Automation; Machine learning algorithms

向作者/读者索取更多资源

Latencies and delays play an important role in temporally precise robot control. During dynamic tasks in particular, a robot has to account for inherent delays to reach manipulated objects in time. The different types of occurring delays are typically convoluted and thereby hard to measure and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well as the uncertainty of the prediction. Experiments on two widely used robot platforms show significant actuation and response delays in standard control loops. Predictive models can, therefore, be used to reason about expected delays and improve temporal accuracy during control. The approach can easily be used on different robot platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据