4.7 Article

Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

期刊

GEOSCIENTIFIC MODEL DEVELOPMENT
卷 8, 期 3, 页码 549-577

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/gmd-8-549-2015

关键词

-

资金

  1. Nature Environment Research Council (NERC) [NE/J010073/1]
  2. Nature Environment Research Council (NERC)
  3. NERC [NE/J009202/1]
  4. CNPq [306340/2011-9]
  5. EU [283576]
  6. SAMBBA NERC [NE/J010073/1]
  7. UK Met Office
  8. NERC
  9. Natural Environment Research Council [ncas10006, 1236935, NE/J010073/1, NE/J009202/1] Funding Source: researchfish
  10. NERC [NE/J010073/1, ncas10006, NE/J009202/1] Funding Source: UKRI

向作者/读者索取更多资源

The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 mu g sm(-3)) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF-Chem tended to under-predict AODs. Modelled aerosol loadings in the east were higher in the modified emission scenario. The primary organic matter to black carbon ratio was typically between 8-10 in WRF-Chem. This was lower than the western flight measurements (interquartile range of 11.6-15.7 in B734, 14.7-24.0 in B739), but similar to the eastern flight B742 (8.1-10.4). However, single scattering albedo was close to measured over the western flights (0.87-0.89 in model; 0.86-0.91 in flight B734, and 0.81-0.95 in flight B739 measurements) but too high over the eastern flight B742 (0.86-0.87 in model, 0.79-0.82 in measurements). This suggests that improvements are needed to both modelled aerosol composition and optical properties calculations in WRF-Chem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据