4.7 Article

Fast Deployment of UAV Networks for Optimal Wireless Coverage

期刊

IEEE TRANSACTIONS ON MOBILE COMPUTING
卷 18, 期 3, 页码 588-601

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TMC.2018.2840143

关键词

Unmanned aerial vehicle networks; wireless coverage; fast deployment; approximation algorithm

资金

  1. Singapore Ministry of Education Academic Research Fund Tier 2 [MOE2016-T2-1-173]

向作者/读者索取更多资源

Unmanned Aerial Vehicle (UAV) networks have emerged as a promising technique to rapidly provide wireless coverage to a geographical area, where a flying UAV can be fast deployed to serve as cell site. Existing work on UAV-enabled wireless networks overlook the fast UAV deployment for wireless coverage, and such deployment problems have only been studied recently in sensor networks. Unlike sensors, UAVs should be deployed to the air and they are generally different in flying speed, operating altitude and wireless coverage radius. By considering such UAV heterogeneity to cover the whole target area, this paper studies two fast UAV deployment problems: one is to minimize the maximum deployment delay among all UAVs (min-max) for fairness consideration, and the other is to minimize the total deployment delay (min-sum) for efficiency consideration. We prove both min-max and min-sum problems are NP-complete in general. When dispatching UAVs from the same location, we present an optimal algorithm of low computational complexity O(n(2)) for the min-max problem. When UAVs are dispatched from different locations, we propose to preserve their location order during deployment and successfully design a fully polynomial time approximation scheme (FPTAS) of computation complexity O(n(2)log 1/epsilon) to arbitrarily approach the global optimum with relative error epsilon. The min-sum problem is more challenging. When UAVs are dispatched from the same initial location, we present an approximation algorithm of linear time. As for the general case, we further reformulate it as a dynamic program and propose a pseudo polynomial-time algorithm to solve it optimally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据