4.7 Article

Sparse Representation-Based Radiomics for the Diagnosis of Brain Tumors

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 37, 期 4, 页码 893-905

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2017.2776967

关键词

Brain tumors; radiomics; sparse representation; tumor differentiation; molecular marker estimation

资金

  1. National Basic Research Program of China [2015CB755500]
  2. National Natural Science Foundation of China [61471125]

向作者/读者索取更多资源

Brain tumors are the most common malignant neurologic tumors with the highest mortality and disability rate. Because of the delicate structure of the brain, the clinical use of several commonly used biopsy diagnosis is limited for brain tumors. Radiomics is an emerging technique for noninvasive diagnosis based on quantitative medical image analyses. However, current radiomics techniques are not standardized regarding feature extraction, feature selection, and decision making. In this paper, we propose a sparse representation-based radiomics (SRR) system for the diagnosis of brain tumors. First, we developed a dictionary learning-and sparse representation-based feature extraction method that exploits the statistical characteristics of the lesion area, leading to fine and more effective feature extraction compared with the traditional explicitly calculation-based methods. Then, we set up an iterative sparse representation method to solve the redundancy problem of the extracted features. Finally, we proposed a novel multi-feature collaborative sparse representation classification framework that introduces a new coefficient of regularization term to combine features from multi-modal images at the sparse representation coefficient level. Two clinical problems were used to validate the performance and usefulness of the proposed SRR system. One was the differential diagnosis between primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM), and the other was isocitrate dehydrogenase 1 estimation for gliomas. The SRR system had superior PCNSL and GBM differentiation performance compared with some advanced imaging techniques and yielded 11% better performance for estimating IDH1 compared with the traditional radiomics methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据