4.7 Article

An AWID and AWIS X-By-Wire UGV: Design and Hierarchical Chassis Dynamics Control

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2018.2824346

关键词

Unmanned ground vehicle; mobile robot; X-by-wire; chassis dynamics control; robust control

资金

  1. National Natural Science Foundation of China [U1564210]
  2. Young Elite Scientists Sponsorship Program by CAST of China

向作者/读者索取更多资源

In this paper, an all-wheel independently driven and all-wheel independently steered unmanned ground vehicle (UGV) is described. This paper investigates the hierarchical chassis yaw dynamics control (CYDC) and the tyre force control of the UGV in the remote control mode (RCM). The hierarchical CYDC scheme in RCM is proposed. As the key part in the control scheme, a yaw moment controller is proposed to deal with the oversteer problem of the UGV. Through the robust-based pole placement technique, the ideal poles' zones of the lateral UGV dynamics system are able to be tuned to meet different dynamics behavior requirements in different UGV tasks. The robust state feedback yaw dynamics controller is investigated based on the linear matrix inequalities approach. It considers the unavoidable parametric disturbance and uncertainty, such as the variation of the UGV's mass, yaw inertia, and tyreroad characteristics. In addition, in order to improve its performance in off-road conditions, the tyre traction force distribution algorithm and sliding mode wheel slip controller are designed to negotiate uneven terrains. The experiments in paved and off-road conditions are conducted to demonstrate the performance of the proposed controller.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据