4.7 Article

System Optimization for Dynamic Wireless Charging Electric Vehicles Operating in a Multiple-Route Environment

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2017.2731787

关键词

Dynamic wireless charging; multiple route; electric vehicle; particle swarm optimization; meta-heuristics

资金

  1. National Research Foundation of Korea - Korean Ministry of Education [NRF-2016R1D1A1B03930712]

向作者/读者索取更多资源

Dynamic wireless charging (DWC) technology, a novel way of supplying vehicles with electric energy, allows the vehicle battery to be recharged remotely while it is moving over power tracks, which are charging infrastructures installed beneath the road. DWC systems mitigate the range limitation of electric vehicles by using power tracks as additional sources of electric energy. This paper proposes a model and algorithm for optimally designing DWC electric vehicle (EV) systems, particularly those operating in multiple-route environments. Multiroute system comprises several single routes that share common road segments, and the vehicles operating on a specific route are equipped with identical batteries. We build a general model to optimally allocate power tracks and determine the vehicle battery size for each route. Then, we apply a particle swarm optimization algorithm to solve the given multi-route DWC-EV system optimization problem. A numerical example is solved to illustrate the characteristics of the multi-route model, and we show that the proposed modeling approach and algorithm are effective, compared with a mixed integer programming-based exact solution approach. We also conduct a sensitivity analysis to examine the solution behavior of the problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据