4.5 Article

Tensor SVD: Statistical and Computational Limits

期刊

IEEE TRANSACTIONS ON INFORMATION THEORY
卷 64, 期 11, 页码 7311-7338

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2018.2841377

关键词

Computational complexity; maximum likelihood estimation; minimax techniques; signal denoising; tensor SVD

向作者/读者索取更多资源

In this paper, we propose a general framework for tensor singular value decomposition (tensor singular value decomposition (SVD)), which focuses on the methodology and theory for extracting the hidden low-rank structure from high-dimensional tensor data. Comprehensive results are developed on both the statistical and computational limits for tensor SVD. This problem exhibits three different phases according to the signal-to-noise ratio (SNR). In particular, with strong SNR, we show that the classical higher-order orthogonal iteration achieves the minimax optimal rate of convergence in estimation; with weak SNR, the information-theoretical lower bound implies that it is impossible to have consistent estimation in general; with moderate SNR, we show that the non-convex maximum likelihood estimation provides optimal solution, but with NP-hard computational cost; moreover, under the hardness hypothesis of hypergraphic planted clique detection, there are no polynomial-time algorithms performing consistently in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据