4.5 Article

The rate of glycolysis quantitatively mediates specific histone acetylation sites

期刊

CANCER & METABOLISM
卷 3, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s40170-015-0135-3

关键词

Acetyl coenzyme A (acetyl-CoA); Histone acetylation; Warburg effect; Glycolysis; Cancer

资金

  1. National Institutes of Health [R00CA168997, R01CA193256]
  2. King Abdullah International Medical Research Center under the Miinstry of National Guard Health Affairs

向作者/读者索取更多资源

Background: Glucose metabolism links metabolic status to protein acetylation. However, it remains poorly understood to what extent do features of glucose metabolism contribute to protein acetylation and whether the process can be dynamically and quantitatively regulated by differing rates of glycolysis. Results: Here, we show that titratable rates of glycolysis with corresponding changes in the levels of glycolytic intermediates result in a graded remodeling of a bulk of the metabolome and resulted in gradual changes in total histone acetylation levels. Dynamic histone acetylation levels were found and most strongly correlated with acetyl coenzyme A (ac-CoA) levels and inversely associated with the ratio of ac-CoA to free CoA. A multiplexed stable isotopic labeling by amino acids in cell culture (SILAC)-based proteomics approach revealed that the levels of half of identified histone acetylation sites as well as other lysine acylation modifications are tuned by the rate of glycolysis demonstrating that glycolytic rate affects specific acylation sites. Conclusions: We demonstrate that histone acylation is directly sensed by glucose flux in a titratable, dose -dependent manner that is modulated by glycolytic flux and that a possible function of the Warburg Effect, a metabolic state observed in cancers with enhanced glucose metabolism, is to confer specific signaling effects on cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据