4.8 Article

Distributed Control of Inverter-Interfaced Microgrids With Bounded Transient Line Currents

期刊

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
卷 14, 期 5, 页码 2052-2061

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TII.2018.2791988

关键词

Distributed generator (DG); feedback linearization; inverter-interfaced microgrids; transient line current

向作者/读者索取更多资源

Distributed generators (DGs) in a microgrid are tightly coupled through power lines, whose dynamics should not be ignored. If not properly handled, large transient line currents may trigger false protection even under normal operating conditions. Droop-based control adjustments also unnecessarily increase frequency and voltage oscillations. Targeting at these problems, this paper presents a distributed control solution for inverter-interfaced microgrids. The objective of primary control is to realize the desired regulations of bus voltages and frequency as well as suppression of transient line currents. The objective of secondary control is to maintain fair load sharing. At secondary control level, a consensus algorithm is introduced to calculate the references for phase angles of bus voltages based on fair load sharing and dc power flow. At primary control level, a feedback linearization based control algorithm with dynamic control bounds is designed for voltage regulation and transient line current suppression. In addition to a common reference frame, the subsystem controllers only require measurements of local and neighboring subsystems. The effectiveness of the proposed control solution is demonstrated through simulations based on both simplified and detailed models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据