4.8 Article

Adaptive-Critic-Based Robust Trajectory Tracking of Uncertain Dynamics and Its Application to a Spring-Mass-Damper System

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 65, 期 1, 页码 654-663

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2017.2722424

关键词

Adaptive critic design; neural networks; optimal control; robust trajectory tracking; self-learning control; system uncertainty

资金

  1. Beijing Natural Science Foundation [4162065]
  2. National Natural Science Foundation of China [U1501251]
  3. Tianjin Natural Science Foundation [14JCQNJC05400]
  4. State Key Laboratory of Management and Control for Complex Systems [20170105]
  5. China Postdoctoral Science Foundation [2014M561559]
  6. SKLMCCS

向作者/读者索取更多资源

In this paper, the robust trajectory tracking design of uncertain nonlinear systems is investigated by virtue of a self-learning optimal control formulation. The primary novelty lies in that an effective learning based robust tracking control strategy is developed for nonlinear systems under a general uncertain environment. The augmented system construction is performed by combining the tracking error with the reference trajectory. Then, an improved adaptive critic technique, which does not depend on the initial stabilizing controller, is employed to solve the Hamilton-Jacobi-Bellman (HJB) equation with respect to the nominal augmented system. Using the obtained control law, the closed-loop form of the augmented system is built with stability proof. Moreover, the robust trajectory tracking performance is guaranteed via Lyapunov approach in theory and then through simulation demonstration, where an application to a practical spring-mass-damper system is included.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据