4.6 Article

Estimation and Control of Wind Turbine Tower Vibrations Based on Individual Blade-Pitch Strategies

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2018.2833064

关键词

Active damping control; Kalman filter; state estimation of dynamical systems; wind energy

向作者/读者索取更多资源

In this brief, we present a method to estimate the tower fore-aft velocity based upon measurements from blade load sensors. In addition, a tower dampening control strategy is proposed based upon an individual blade pitch control architecture that employs this estimate. The observer design presented in this brief exploits the Coleman transformations that convert a time-varying turbine model into one that is linear and time-invariant, greatly simplifying the observability analysis and subsequent observer design. The proposed individual pitch-based tower controller is decoupled from the rotor speed regulation loop and hence does not interfere with the nominal turbine power regulation. Closed-loop results, obtained from high fidelity turbine simulations, show close agreement between the tower estimates and the actual tower velocity. Furthermore, the individual-pitch-based tower controller achieves a similar performance compared with the collective-pitch-based approach but with negligible impact upon the nominal turbine power output.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据