4.6 Article

Fractional Wavelet Scattering Network and Applications

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 66, 期 2, 页码 553-563

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2018.2850356

关键词

Fractional wavelet transform (FRWT); scattering network; classification; histopathology image; gland segmentation

资金

  1. National Key R&B Program of China [2017YFC0109202, 2017YFC0107900]
  2. National Natural Science Foundation of China [61201344, 61271312, 61401085, 31571001, 31640028, 31400842, 61572258, 11301074, 61471226]
  3. Qing Lan Project
  4. 333 project [BRA 2015288]
  5. Short-term Recruitment Program of Foreign Experts [WQ20163200398]
  6. Natural Science Foundation of Shandong Province [JQ201516, 2018GGX101018]
  7. Taishan scholar project of Shandong Province

向作者/读者索取更多资源

Objective: This study introduces a fractional wavelet scattering network (FrScatNet), which is a generalized translation invariant version of the classical wavelet scattering network. Methods: In our approach, the FrScatNet is constructed based on the fractional wavelet transform (FRWT). The fractional scattering coefficients are iteratively computed using FRWTs and modulus operators. The feature vectors constructed by fractional scattering coefficients are usually used for signal classification. In this paper, an application example of the FrScatNet is provided in order to assess its performance on pathological images. First, the FrScatNet extracts feature vectors from patches of the original histological images under different orders. Then we classify those patches into target (benign or malignant) and background groups. And the FrScatNet property is analyzed by comparing error rates computed from different fractional orders, respectively. Based on the above pathological image classification, a gland segmentation algorithm is proposed by combining the boundary information and the gland location. Results: The error rates for different fractional orders of FrScatNet are examined and show that the classification accuracy is improved in fractional scattering domain. We also compare the FrScatNet-based gland segmentation method with those proposed in the 2015 MICCAI Gland Segmentation Challenge and our method achieves comparable results. Conclusion: The FrScatNet is shown to achieve accurate and robust results. More stable and discriminative fractional scattering coefficients are obtained by the FrScatNet in this paper. Significance: The added fractional order parameter is able to analyze the image in the fractional scattering domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据