4.6 Article

Motor-Current-Based Estimation of Cartesian Contact Forces and Torques for Robotic Manipulators and Its Application to Force Control

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2017.2691136

关键词

Cartesian contact force estimation (CCFE); generalized momentum observer; Kalman filtering; robotic manipulators

向作者/读者索取更多资源

We present a Kalman filter-based approach for estimating external forces and torques relying on a dynamic model of a serial-chain robotic manipulator where only motor signals (currents, joint angles, and joint speeds) are measurable. The method does not require any additional sensing compared to standard robot control systems. The approach exploits redundancy in 7DOF arms, but also applies to traditional 6DOF manipulators. Automatic filter calibration routines are presented minimizing the number of parameters that must be tuned in order to successfully apply the proposed scheme and to optimize estimation quality. The approach is verified by measurement data gathered from an ABB YuMi, a dual-arm collaborative robot with 7DOF each arm. Furthermore, measurement results are presented employing force and torque estimates in a compliance control scheme, verifying that the estimation quality achieved is improved compared to existing approaches and is sufficient to employ the estimates in force-controlled applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据