4.6 Article

Steering and Control of Miniaturized Untethered Soft Magnetic Grippers With Haptic Assistance

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASE.2016.2635106

关键词

Grasping; haptics; magnetic control; microteleoperation; microrobotics; soft robotics

资金

  1. European Research Council under European Union [638428]
  2. European Union [601165]
  3. National Institutes of Health [R01EB017742]
  4. European Research Council (ERC) [638428] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Untethered miniature robotics have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery, microassembly, and biopsy procedures. However, the vast majority of these small-scale robots have very limited manipulation capabilities, and none of the steering systems currently available enables humans to intuitively and effectively control dexterous miniaturized robots in a remote environment. In this paper, we present an innovative microtele-operation system with haptic assistance for the intuitive steering and control of miniaturized self-folding soft magnetic grippers in 2-D space. The soft grippers can be wirelessly positioned using weak magnetic fields and opened/closed by changing their temperature. An image-guided algorithm tracks the position of the controlled miniaturized gripper in the remote environment. A haptic interface provides the human operator with compelling haptic sensations about the interaction between the gripper and the environment as well as enables the operator to intuitively control the target position and grasping configuration of the gripper. Finally, magnetic and thermal control systems regulate the position and grasping configuration of the gripper. The viability of the proposed approach is demonstrated through two experiments involving 26 human subjects. Providing haptic stimuli elicited statistically significant improvements in the performance of the considered navigation and micromanipulation tasks. Note to Practitioners-The ability to accurately and intuitively control the motion of miniaturized grippers in remote environments can open new exciting possibilities in the fields of minimally invasive surgery, micromanipulation, biopsy, and drug delivery. This paper presents a microteleoperation system with haptic assistance through which a clinician can easily control the motion and open/close capability of miniaturized wireless soft grippers. It introduces the underlying autonomous magnetic and thermal control systems, their interconnection with the master haptic interface, and an extensive evaluation in two real-world scenarios: 1) following of a predetermined trajectory and 2) pick-and-place task of a microscopic object.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据