4.7 Article

Dec1 and CLOCK Regulate Na+/K+-ATPase 1 Subunit Expression and Blood Pressure

期刊

HYPERTENSION
卷 72, 期 3, 页码 746-754

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.118.11075

关键词

aorta; blood pressure; chromatin immunoprecipitation; circadian rhythm; suprachiasmatic nucleus

资金

  1. Ministry of Education, Science and Culture of Japan [21790814, 25461248, 23390423]
  2. Banyu Foundation Research Grant
  3. Grants-in-Aid for Scientific Research [21790814, 23390423, 25461248] Funding Source: KAKEN

向作者/读者索取更多资源

Blood pressure shows a circadian rhythm, and recent studies have suggested the involvement of a molecular clock system in its control. In the clock system, the CLOCK (circadian locomotor output cycles kaput):BMAL1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1) heterodimer enhances promoter activity of clock genes, and DEC1 (BHLHE40/STRA13/SHARP-2) represses CLOCK/BMAL1-enhanced promoter activity through competition for binding to the clock element, CACGTG E-box. However, the molecular mechanisms by which this system regulates blood pressure remain unclear. Here, we show that DEC1 suppressed the expression of ATP1B1, which encodes the 1 subunit of the Na+/K+-ATPase and elevated blood pressure. Using chromatin immunoprecipitation and chromatin immunoprecipitation-on-chip analyses, we found that DEC1 and CLOCK bound to E-boxes in the ATP1B1 promoter. Luciferase assays revealed that CLOCK:BMAL1 heterodimer enhanced transcription from the ATP1B1 promoter, whereas DEC1 suppressed this transactivation. Accordingly, Atp1b1 mRNA and protein levels in mouse kidney, aorta, and heart showed a circadian rhythm that was antiphasic to the blood pressure rhythm. Furthermore, Dec1-deficient mice showed enhanced Atp1b1 expression in these tissues and reduced blood pressure. In contrast, Clock-mutant mice showed reduced Atp1b1 expression and elevated blood pressure. Our results raise the possibility that transcriptional regulation of Atp1b1 by DEC1 and CLOCK:BMAL1 contributes to blood pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据