4.6 Article

Thermal and isotopic evidence for surface and subsurface water contributions to baseflow in a high Arctic river

期刊

HYDROLOGICAL PROCESSES
卷 32, 期 5, 页码 602-616

出版社

WILEY
DOI: 10.1002/hyp.11427

关键词

Arctic; hydrology; river temperature; subsurface flow; surface flow; thermal regime

资金

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. ArcticNet
  3. Northern Scientific Training Program

向作者/读者索取更多资源

Seven longitudinal water temperature tow surveys were conducted to attempt to identify the location of surface and subsurface river water exchanges along the length of the West River at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, Canada (74 degrees 55 N, 109 degrees 35 W). Water temperature data were collected using a calibrated thermistor with an accuracy of +/- 0.002 degrees C (resolution <0.00005 degrees C) along the river during July 2014 in conjunction with stable water isotope sampling to support the thermal data and to determine the extent of surface water mixing from different sources such as precipitation, snowmelt, and surface/subsurface water contributions to the river. Atmospheric conditions were found to be the main contributor to seasonal temperature variance in the river, whereas tributary inflows and residual channel snow also had important thermal effects to river temperatures. Residual channel snow was a sustained source of cold water during much of the 2014 summer season (June-August) and substantially offset downstream warming. The longitudinal temperature profiles indicate notable changes to the thermal state of the river, which are interpreted to be indicative of subsurface and surface water exchange through inputs of relatively cold or warm water. Broadly, surface inflows were found to provide warmer water relative to the West River, and contributed to downstream warming of the river, along with downstream enrichment of D and O-18. Subsurface inflows provided cooler water relative to the river, and contributed to downstream depletion of D and O-18 and downstream cooling of river temperatures. These results demonstrate that localized changes in river temperature, in conjunction with isotopic tracers, can be used to track channel-slope water interactions in Arctic hydrological systems, work previously limited to alpine and temperate settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据