4.7 Article

Nonlocal Structure Tensor Functionals for Image Regularization

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCI.2015.2434616

关键词

Image reconstruction; nonlocal regularization; structure tensor; total variation; convex optimization

资金

  1. Swiss National Science Foundation (SNF) [P300P2_151325]
  2. Keck Foundation
  3. Swiss National Science Foundation (SNF) [P300P2_151325] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

We present a nonlocal regularization framework that we apply to inverse imaging problems. As opposed to existing nonlocal regularization methods that rely on the graph gradient as the regularization operator, we introduce a family of nonlocal energy functionals that involves the standard image gradient. Our motivation for designing these functionals is to exploit at the same time two important properties inherent in natural images, namely the local structural image regularity and the nonlocal image self-similarity. To this end, our regularizers employ as their regularization operator a novel nonlocal version of the structure tensor. This operator performs a nonlocal weighted average of the image gradients computed at every image location and, thus, is able to provide a robust measure of image variation. Furthermore, we show a connection of the proposed regularizers to the total variation semi-norm and prove convexity. The convexity property allows us to employ powerful tools from convex optimization to design an efficient minimization algorithm. Our algorithm is based on a splitting variable strategy, which leads to an augmented Lagrangian formulation. To solve the corresponding optimization problem, we employ the alternating-direction methods of multipliers. Finally, we present extensive experiments on several inverse imaging problems, where we compare our regularizers with other competing local and nonlocal regularization approaches. Our results are shown to be systematically superior, both quantitatively and visually.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据