4.6 Article

Akinete germination chamber: An experimental device for cyanobacterial akinete germination and plankton emergence

期刊

HARMFUL ALGAE
卷 72, 期 -, 页码 74-81

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.hal.2018.01.004

关键词

Akinete; Germination; Sediment; Cyanobacteria; Chamber

资金

  1. Basic Environmental Research Program of the Han River System of the Han River Watershed Environmental Office, the Ministry of Environment, Republic of Korea

向作者/读者索取更多资源

Understanding how algal resting cells (e.g. akinetes) germinate and what factors influence their germination rate is crucial for elucidating the development of algal blooms and their succession. While laboratory studies have demonstrated algal germination rate and some key factors affecting the germination, the use of artificially induced akinetes andlor removal of the sediments are obviously limiting in simulating the natural environment when designing such controlled experiments. This study introduce a laboratory Akinete Germination Chamber (AGC) that facilitates research for cyanobacterial akinete germination and emergence in an environment similar to natural conditions while minimizing sediment disturbance. The fundamental difference between AGC method and the conventional microplate method is that AGC incorporates the substrate from the natural environment whereas the microplate method does not employ sediment. Therefore, authors of this study assume that the characteristics of akinete germination between the two methods differ because the sediment influences the germination environment. The present study developed the AGC method as an efficient tool to understand harmful cyanobacterial bloom formation. For validation of the AGC method, this study evaluated akinete germination of Dolichospermum circinale (Anabaena circinalis) with different temperature and nutrient condition and then compared the results with those generated by conventional methods The results showed a marked difference in the maximal germination rate between two methods (78% and 35% in the AGC and the microplate, respectively; p < 0.05) at optimum germination temperature (25 degrees C for both the AGC and the microplate). The nutrient effect also demonstrated clear difference (p < 0.01) in the germination rate between two methods; 88%, 68% and 78% in the AGC and 15%, 20% and 15% in the microplate with -N+P, +N-P, and +N+P condition of CB medium, respectively. Importantly, both DW and -N-P treatments in the AGC induced a little germination of akinete (4.2 +/- 1.4% and 5.0 +/- 7.1%, respectively), whereas no germination was occurred in the DW treatment in the microplate, suggesting a possible positive effect of sediment on akinete germination. With these results, this study suspects that these differences were largely attributable to natural sediment. Also sediment accompanied properties, possibly such as nutrient availability, heat budget, micronutrients, and bacteria might have some potential effects on akinete germination. The AGC method can overcome the limitations of the conventional microplate method, and that it is applicable in studies on pelagic-benthic coupling. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据