4.8 Article

Renewable thermoset polymers based on lignin and carbohydrate derived monomers

期刊

GREEN CHEMISTRY
卷 20, 期 5, 页码 1131-1138

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7gc03552g

关键词

-

资金

  1. Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]

向作者/读者索取更多资源

With limited current biomass utilization as a renewable resource, it is important to develop a method to convert biomass into materials to replace fossil fuel products. In this article, lignin and carbohydrate derived monomers, including 4-methylcatechol, 5-hydroxymethylfurfural (HMF), and furfural, were used to prepare bisphenol-furan type polyphenols. Epoxy networks were synthesized from different polyphenol monomers via glycidylation and curing steps under identical reaction conditions. The structures of bisphenol-furan trinuclear compounds, epoxide precursors, and cured epoxy polymer networks were characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR) and high resolution mass spectrometry (MS). Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) were conducted to test the thermo-mechanical properties of the resulting networks. These polymer materials exhibited an excellent glassy modulus (9.6 GPa), glass transition temperature (T-g) (110 degrees C), and thermal stability. The density and water absorption of the materials were measured. This work provides synthesis routes to highly bio-based epoxy thermosets, which paves the way towards preparing moldable polymers from wood via biorefinery products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据