4.8 Article

Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton

期刊

GLOBAL CHANGE BIOLOGY
卷 24, 期 10, 页码 4747-4757

出版社

WILEY
DOI: 10.1111/gcb.14371

关键词

climate change; copepods; heat waves; mesocosms; predator-prey; resting stage; rotifer; zooplankton

资金

  1. China Scholarship Council
  2. EU ERA-net BiodivERsA project LIMNOTIP through the Swedish Environmental Research Council for Spatial Planning and the Environment (FORMAS)

向作者/读者索取更多资源

In addition to an increase in mean temperature, extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity with climate change, which are likely to affect organism interactions, seasonal succession, and resting stage recruitment patterns in terrestrial as well as in aquatic ecosystems. For example, freshwater zooplankton with different life-history strategies, such as sexual or parthenogenetic reproduction, may respond differently to increased mean temperatures and rapid temperature fluctuations. Therefore, we conducted a long-term (18months) mesocosm experiment where we evaluated the effects of increased mean temperature (4 degrees C) and an identical energy input but delivered through temperature fluctuations, i.e., as heat waves. We show that different rotifer prey species have specific temperature requirements and use limited and species-specific temperature windows for recruiting from the sediment. On the contrary, co-occurring predatory cyclopoid copepods recruit from adult or subadult resting stages and are therefore able to respond to short-term temperature fluctuations. Hence, these different life-history strategies affect the interactions between cyclopoid copepods and rotifers by reducing the risk of a temporal mismatch in predator-prey dynamics in a climate change scenario. Thus, we conclude that predatory cyclopoid copepods with long generation time are likely to benefit from heat waves since they rapidly wake up even at short temperature elevations and thereby suppress fast reproducing prey populations, such as rotifers. In a broader perspective, our findings suggest that differences in life-history traits will affect predator-prey interactions, and thereby alter community dynamics, in a future climate change scenario.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据