4.6 Article

ASCL1 regulates proliferation of NG2-glia in the embryonic and adult spinal cord

期刊

GLIA
卷 66, 期 9, 页码 1862-1880

出版社

WILEY
DOI: 10.1002/glia.23344

关键词

ASCL1; NG2-glia; OPCs; oligodendrogenesis; proliferation; spinal cord

资金

  1. National Institutes of Health (NIH) [R01 NS032817]
  2. National Institute of Neurological Disorders and Stroke of NIH [K22 NS092767]

向作者/读者索取更多资源

NG2-glia are highly proliferative oligodendrocyte precursor cells (OPCs) that are widely distributed throughout the central nervous system (CNS). During development, NG2-glia predominantly differentiate into oligodendrocytes (OLs) to myelinate axon fibers, but they can also remain as OPCs persisting into the mature CNS. Interestingly, NG2-glia in the gray matter (GM) are intrinsically different from those in the white matter (WM) in terms of proliferation, differentiation, gene expression, and electrophysiological properties. Here we investigate the role of the transcriptional regulator, ASCL1, in controlling NG2-glia distribution and development in the GM and WM. In the spinal cord, ASCL1 levels are higher in WM NG2-glia than those in the GM. This differential level of ASCL1 in WM and GM NG2-glia is maintained into adult stages. Long-term clonal lineage analysis reveals that the progeny of single ASCL1+ oligodendrocyte progenitors (OLPs) and NG2-glia are primarily restricted to the GM or WM, even though they undergo extensive proliferation to give rise to large clusters of OLs in the postnatal spinal cord. Conditional deletion of Ascl1 specifically in NG2-glia in the embryonic or adult spinal cord resulted in a significant reduction in the proliferation but not differentiation of these cells. These findings illustrate that ASCL1 is an intrinsic regulator of the proliferative property of NG2-glia in the CNS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据