4.4 Article

Evaluation of Immobilization Techniques for the Fabrication of Nanomaterial-Based Amperometric Glucose Biosensors

期刊

ANALYTICAL LETTERS
卷 48, 期 8, 页码 1297-1310

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00032719.2014.979364

关键词

Nanoparticles; Glucose biosensor; Layer-by-layer; Cross-linking; Electropolymerization

资金

  1. Bulgarian Ministry of Education
  2. National Science Fund [DNTS-01/09]

向作者/读者索取更多资源

Eleven glucose biosensors were prepared by cross-linking, entrapment, and layer-by-layer assembly to investigate the influence of these immobilization methods on performance. The effects of separate nanozeolites combined with magnetic nanoparticles and multiwalled carbon nanotubes in the enzyme composition on the performance of glucose biosensors were compared. Cyclic voltammetric studies were carried out on the biosensors. Acrylonitrile copolymer/nanozeolite/carbon nanotube and acrylonitrile copolymer/nanozeolite/magnetic nanoparticle electrodes prepared by a cross-linking method showed the highest electroactivity. These results indicated that a synergistic effect occurred when multiwalled carbon nanotubes, magnetic nanoparticles, and nanozeolites were combined that greatly improved the electron transfer ability of the sensors. Amperometric measurements by the glucose oxidase electrodes were obtained that showed that the acrylonitrile copolymer/nanozeolite/carbon nanotube electrode was the most sensitive (10.959 microamperes per millimolar). The lowest detection limit for this biosensor was 0.02 millimolar glucose, with a linear dynamic range up to 3 millimolar. The response after thirty days was 81 percent of the initial current.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据