4.6 Article

A unified model to determine the energy partitioning between target and plasma in nanosecond laser ablation of silicon

期刊

JOURNAL OF APPLIED PHYSICS
卷 117, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4915118

关键词

-

资金

  1. Austrian Research Promotion Agency (FFG) [831163]
  2. Carinthian Economic Promotion Fund (KWF) [KWF-1521-22741-34186]

向作者/读者索取更多资源

In semiconductor industry, pulsed nanosecond lasers are widely applied for the separation of silicon wafers. Here, the high intensities employed activate a cascade of complex multi-physical and multi-phase mechanisms, which finally result in the formation of a laser induced plasma, shielding the target from the incoming laser beam. Such induced plasma plume, by preventing the laser to effectively reach the target, reduces the overall efficiency and controllability of the ablation process. Modelling can be a useful tool in the optimization of industrial laser applications, allowing a deeper understanding of the way the laser energy distributes between target and induced plasma. Nevertheless, the highly multi-physical character of laser ablation poses serious challenges on the implementation of the various mechanisms underlying the process within a common modelling framework. A novel strategy is here proposed in order to simulate in a simplified, yet physically consistent way, a typical industrial application as laser ablation of silicon wafers. Reasonable agreement with experimental findings is obtained. Three fundamental mechanisms have been identified as the main factors influencing the accuracy of the numerical predictions: the transition from evaporative to volumetric mass removal occurring at critical temperature, the collisional and radiative processes underlying the initial plasma formation stage and the increased impact of the liquid ejection mechanism when a sub-millimeter laser footprint is used. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据