4.7 Article

Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 19, 期 3, 页码 1439-1456

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-19-1439-2015

关键词

-

资金

  1. BMBF (German Federal Ministry of Education and Research) [02WM0802, 02WM1081]
  2. BMFB-MOST Young Scientist Exchange Program during a 2-month stay at the University of Haifa/Israel
  3. German Research Foundation (DFG)
  4. Albert Ludwigs University Freiburg

向作者/读者索取更多资源

Knowledge of soil moisture dynamics in the unsaturated soil zone provides valuable information on the temporal and spatial variability of groundwater recharge. This is especially true for the Mediterranean region, where a substantial fraction of long-term groundwater recharge is expected to occur during high magnitude precipitation events of above-average wet winters. To elucidate process understanding of infiltration processes during these extreme events, a monitoring network of precipitation gauges, meteorological stations, and soil moisture plots was installed in an area with a steep climatic gradient in the Jordan Valley region. In three soil moisture plots, Hydrus-1D was used to simulate water movement in the unsaturated soil zone with soil hydraulic parameters estimated by the Shuffled Complex Evolution Metropolis algorithm. To generalize our results, we modified soil depth and rainfall input to simulate the effect of the pronounced climatic gradient and soil depth variability on percolation fluxes and applied the calibrated model to a time series with 62 years of meteorological data. Soil moisture measurements showed a pronounced seasonality and suggested rapid infiltration during heavy rainstorms. Hydrus-1D successfully simulated short and long-term soil moisture patterns, with the majority of simulated deep percolation occurring during a few intensive rainfall events. Temperature drops in a nearby groundwater well were observed synchronously with simulated percolation pulses, indicating rapid groundwater recharge mechanisms. The 62-year model run yielded annual percolation fluxes of up to 66% of precipitation depths during wet years and of 0% during dry years. Furthermore, a dependence of recharge on the temporal rainfall distribution could be shown. Strong correlations between depth of recharge and soil depth were also observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据