4.2 Article

Molecular dynamics simulations of nanosheets of polymeric carbon nitride and comparison with experimental observations

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/1536383X.2017.1419341

关键词

carbon nitride; conformation; molecular dynamics; MOPAC; nanosheets

向作者/读者索取更多资源

A computational study of the properties of polymeric carbon nitride using molecular dynamics is presented. The analysis of ideal infinite-extent sheets permits to evaluate the effect of temperature on the network of hydrogen bonds responsible for the linkage of the material. The weakening of this binding mechanism at sufficiently high temperatures, together with the inter-layer interactions characteristic of this type of 2D materials, is shown to determine the conformation properties of polymeric carbon nitride at the nanoscale. The results obtained from the simulation of finite samples in the canonical ensemble at varying temperatures are consistent with those from the characterization of our experimentally synthesized samples. Hydrogen bonding between adjacent polymer ribbons leads this process and is the cause of the typical crumpled structure of this material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据