4.7 Review

Chemical-looping technologies using circulating fluidized bed systems: Status of development

期刊

FUEL PROCESSING TECHNOLOGY
卷 172, 期 -, 页码 1-12

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2017.11.016

关键词

-

资金

  1. European Union as part of project SUCCESS [605871]
  2. ERC-ADG project NoCO2
  3. Chalmers Area of Advance profile Energy in a Circular Economy (ECE)

向作者/读者索取更多资源

In chemical-looping combustion (CLC), an oxygen carrier provides lattice oxygen for complete combustion of a fuel for heat and power production. The reduced metal oxide is then oxidized in a separate reactor. The combustion products CO2 and H2O are obtained in pure form, without any nitrogen in the gas. As no gas separation work is needed, this could be a breakthrough technology for carbon capture (CCS). Normally, the fuel- and air-reactor are designed utilizing inter-connected fluidized beds. The same underlying reversible redox reactions of CLC can be used for other fuel conversion technologies. These include fluidized bed processes for gas, solid and liquid fuels for heat, power, syngas or hydrogen production. Some of these concepts were suggested as far back as the 1950's, while others have just recently been proposed. This paper will provide a review of some recent developments with respect to CLC with gaseous, liquid and solid fuels, with focus on operational experience. Today, more than 35 continuous units have been used worldwide, with over 9000 h of operational time. Although most experience has been reported for methane and natural gas, significant testing has now also been performed with various solid fuels. Some recent developments include i) shift from Ni-based materials to more benign metal oxide oxygen carriers, ii) use of different types of biomass and iii) operation at semi-commercial scale. Furthermore, this paper will also provide an overview some related technologies which also utilize oxygen carriers in interconnected fluidized beds: i) Chemical-looping gasification (CLG), ii) Chemical-looping reforming (CLR) and iii) Chemical-looping tar reforming (CLTR). In these processes, a pure syngas/hydrogen can be produced effectively, which could be utilized for chemical or fuel production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据