4.7 Article

Chemical Explosive Mode Analysis for a Jet-in-Hot-Coflow burner operating in MILD combustion

期刊

FUEL
卷 232, 期 -, 页码 712-723

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2018.05.171

关键词

MILD combustion; Chemical Explosive Mode Analysis (CEMA); Auto-ignition; Computational flame diagnostics; Large Eddy Simulation

资金

  1. Swedish Energy Agency

向作者/读者索取更多资源

Large Eddy Simulations (LES) of Moderate and Intense Low oxygen Dilution (MILD) combustion of a Jet-in-HotCoflow (JHC) burner were performed using detailed chemistry. On the contrary to traditional flames, where heat release is occurring in very thin fronts, MILD combustion occurs in the distributed reaction regime where the reaction zone is broad, thus, this paper applies a direct Arrhenius closure with detailed chemistry to resolve important details of the fuel oxidation reactions. Comparisons of LES results are in good agreement with experiments, demonstrating that the simulations capture the intermediate species and finite reaction rate effects. A Chemical Explosive Mode Analysis (CEMA) was used to determine the flame structure and to detect the pre-and post-ignition regions, including the contributions to the CEMs analyzing the Explosion Index (EI) and Participation Index (PI). To the best of our knowledge, a detailed study of CEMA on MILD or flameless regime has never been reported. The flame structure was clearly visualized with CEMA, as well as the lean and the rich flame fronts. Different flame zones close to the anchoring points of these turbulent lifted flames were selected and the analysis demonstrates the contributions of dominant chemical species, such as HO2 and O. The reactions related to the dominant local CEM were obtained to highlight the nature of the stabilization in these highly diluted operating conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据