4.7 Article

The macroscopic and microscopic analysis on the performance of steam foams during thermal recovery in heavy oil reservoirs

期刊

FUEL
卷 233, 期 -, 页码 166-176

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2018.06.048

关键词

Heavy oil; Steam flooding; Foams; Visualization; Experiment

资金

  1. National Natural Science Foundation of China [51104165]
  2. National Science and Technology Major Projects of the Ministry of Science and Technology of China [2016ZX05058-001-008]

向作者/读者索取更多资源

In heavy oil reservoirs, steam channeling and steam override seriously decrease oil production and the ultimate oil recovery during steam flooding. Aiming at the two problems, some experiments were carried out to analyze the EOR mechanisms through injecting foaming agents along with steam injection in heavy oil reservoirs. An orthogonal method was employed to analyze the multiple factors on foam's properties to optimize foaming agent for steam injection. Then a novel 2D-visualization experiment was carried out to quantitatively study the characteristics of steam channeling and the variation of sweep efficiency during steam or steam foams flooding. Based on the experimental results, many bubble's characteristics, such as migration, retention, regeneration and etc., were analyzed through the macroscopic and microscopic perspectives. The experimental results show that the Jamin effect increases the flow resistance of steam-phase in porous media to obviously enlarge the macro sweep efficiency and effectively increase micro oil displacement efficiency. On a macroscopic level, because of the unique structure, foams decrease steam override or steam channeling to improve sweep efficiency; on a microscopic level, due to the expansion effect of gas-phase, bubbles can desquamate the oil film on the pore wall and even the oil drop in the blind pore to decrease the residual oil saturation. In our experiments, the ultimate recovery of steam flooding can only reach 48.48%. However, the ultimate recovery of steam foams can reach 59.95%, which is 11.47% higher than steam flooding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据