4.7 Article

Experimental investigation into the combustion characteristics of a methanol-Diesel heavy duty engine operated in RCCI mode

期刊

FUEL
卷 226, 期 -, 页码 745-753

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2018.03.088

关键词

Dual-fuel; Methanol direct injection; Diesel engine; RCCI

资金

  1. CERC

向作者/读者索取更多资源

This study examines combustion in a dual-fuel methanol-Diesel heavy duty engine using three different methanol injection configurations: port injection into the intake manifold; direct injection during the intake stroke (DI_E) and direct injection during the compression stroke (DI_L). The latter two methanol direct injection configurations were used in the attempt to reduce HC and CO emissions, which were considerably high in the portinjected high-octane fuel RCCI combustion. Engine experiments were performed using a double Diesel injection strategy with two pilot Diesel injections (PI1 and PI2) and a constant engine speed of 1500 rpm. The effects of three parameters-the PI1 and PI2 injection timings, and the PI2/PI1 duration ratio - were investigated at 5 bar IMEP for the three methanol injection configurations. The onset of unstable combustion and excessive combustion phasing advancement imposed lower or upper limits on the sweeps over the studied parameters. The DI_L configuration achieved lower net indicated thermal efficiencies than the other two methanol injection configurations. The influences of the methanol injection pressure and methanol substitution percentage (MSP) were also investigated for the DI_L configuration at 5 bar IMEP, revealing that the combustion process was relatively insensitive to the methanol injection pressure but was adversely affected by increasing the MSP. Finally, the port and DI_L configurations were tested at various loads. Neither configuration offered any advantage over pure Diesel combustion in terms of net indicated thermal efficiency nor emissions of HC and CO, but both offered lower greenhouse gas emissions at all load points. However, only the methanol port injection configuration achieved ultra-low NOx and soot emissions at 12 bar IMEP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据