4.7 Article

Supersaturation of calcium citrate as a mechanism behind enhanced availability of calcium phosphates by presence of citrate

期刊

FOOD RESEARCH INTERNATIONAL
卷 107, 期 -, 页码 195-205

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foodres.2018.02.020

关键词

Supersaturation; Precipitation kinetics; Biomineralization; Ion speciation; Calcium hydrogencitrate

资金

  1. Danish Dairy Research Foundation
  2. Arla Foods Ingredients
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [12963/13-5]

向作者/读者索取更多资源

Dissolution of amorphous calcium phosphate (ACP) in aqueous citrate at varying pH has been studied with perspective of increasing availability of calcium from sidestreams of whey protein, lactose and/or cheese production or on development of new functional foods. ACP formed as an initial precipitate in 0.10 mol L-1 equimolar aqueous calcium chloride, sodium citrate, and sodium hydrogenphosphate was used as model for mineral residues formed during milk processing. Upon acidification of the ACP suspension by hydrochloric acid decreasing pH from 6.5 to 4.5, the transformations of ACP occurred through an 8 h period of supersaturation prior to a slow precipitation of calcium citrate tetrahydrate. This robust supersaturation, which may explain increased availability of calcium phosphates in presence of citrate, presented a degree of supersaturation of 7.1 and was characterized by precipitation rates for 0.10 mol L-1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium hydrogenphosphate with pH 5.5, and for 0.10 mol L-1 equimolar aqueous calcium chloride, sodium hydrogencitrate, and sodium dihydrogenphosphate with pH 4.1, with a degree of super-saturation of 2.7. The crystallization processes were similar according to Avrami's model with a half-life for precipitation of approximately 5 h independent of the degree of supersaturation. Ion speciation based on measurement of pH, and total concentrations of calcium, phosphate and citrate, and of conductivity and calcium ion activity during precipitation indicates a low driving force for precipitation with calcium citrate complex dominating at pH 5.5 and calcium hydrogencitrate complex dominating at pH 4.1. Calcium hydrogencitrate is suggested to be the species involved in the crystal growth followed by solid state transformation to calcium citrate tetrahydrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据