4.7 Article

TINY TITANS: THE ROLE OF DWARF-DWARF INTERACTIONS IN LOW-MASS GALAXY EVOLUTION

期刊

ASTROPHYSICAL JOURNAL
卷 805, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/805/1/2

关键词

galaxies: dwarf; galaxies: evolution; galaxies: interactions; galaxies: starburst; galaxies: star formation; Magellanic Clouds

资金

  1. NSF [1066293, AST-1211644]
  2. FONDECYT Postdoctoral Fellowship [3150361]
  3. David and Lucile Packard Foundation
  4. L'Oreal USA For Women in Science program
  5. NASA Astrophysics Data Analysis Program [08-ADP08-0072]
  6. Alfred P. Sloan Foundation
  7. U.S. Department of Energy
  8. National Aeronautics and Space Administration
  9. Japanese Monbukagakusho
  10. Max Planck Society
  11. Higher Education Funding Council for England
  12. American Museum of Natural History
  13. Astrophysical Institute Potsdam
  14. University of Basel
  15. University of Cambridge
  16. Case Western Reserve University
  17. University of Chicago
  18. Drexel University
  19. Fermilab
  20. Institute for Advanced Study
  21. Japan Participation Group
  22. Johns Hopkins University
  23. Joint Institute for Nuclear Astrophysics
  24. Kavli Institute for Particle Astrophysics and Cosmology
  25. Korean Scientist Group
  26. Chinese Academy of Sciences (LAMOST)
  27. Los Alamos National Laboratory
  28. Max-Planck-Institute for Astronomy (MPIA)
  29. Max-Planck-Institute for Astrophysics (MPA)
  30. New Mexico State University
  31. Ohio State University
  32. University of Pittsburgh
  33. University of Portsmouth
  34. Princeton University
  35. United States Naval Observatory
  36. University of Washington
  37. National Science Foundation

向作者/读者索取更多资源

We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the spectroscopic portion of the Sloan Digital Sky Survey and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M*,1/M*,2 < 10, projected separations < 50 kpc, and pair member masses of 7 < log (M-*/M-circle dot) < 9.7. The dwarf-dwarf merger sequence, as defined by TNT at z = 0, demonstrates conclusively and for the first time that the star formation enhancement observed for massive galaxy pairs also extends to the dwarf mass range. Star formation is enhanced in paired dwarfs in otherwise isolated environments by a factor of 2.3 (+/- 0.7) at pair separations < 50 kpc relative to unpaired analogs. The enhancement decreases with increasing pair separation and extends out to pair separations as large as 100 kpc. Starbursts, defined by Ha EQW > 100 angstrom, occur in 20% of the TNT dwarf pairs, regardless of environment, compared to only 6%-8% of the matched unpaired dwarfs. Starbursts can be triggered throughout the merger (i.e., out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation and triggered starbursts, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs of the same stellar mass. Thus, there may be significant reservoirs of diffuse, non-star-forming neutral gas surrounding the dwarf pairs, or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (f(gas) < 0.4) and the only dwarfs, either paired or unpaired, with Ha EQW < 2 angstrom are found near massive galaxy hosts. We conclude that dwarf-dwarf interactions are significant drivers of galaxy evolution at the low-mass end, but ultimately environment is responsible for the quenching of star formation. This preliminary study is a precursor to an ongoing high-resolution H (I) and optical imaging program to constrain the spatial distribution of star formation and gas throughout the course of the dwarf-dwarf merger sequence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据