4.5 Article

Comparative sequence- and structure-inspired drug design for PilF protein of Neisseria meningitidis

期刊

HUMAN GENOMICS
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s40246-015-0027-1

关键词

Type IV pilus assembly protein (PilF); Homology modeling; In silico drug designing; Molecular docking; ADME analysis

向作者/读者索取更多资源

Serogroup A of Neisseria meningitidis is the organism responsible for causing epidemic diseases in developing countries by a pilus-mediated adhesion to human brain endothelial cells. Type IV pilus assembly protein (PilF) associated with bacterial adhesion, aggregation, invasion, host cell signaling, surface motility, and natural transformation can be considered as a candidate for effective anti-meningococcal drug development. Since the crystal structure of PilF was not available, in the present study, it was modeled after the Z2491 strain (CAM09255.1) using crystal structure of chain A of Vibrio cholerae putative Ntpase EpsE (Protein Data Bank (PDB) ID: 1P9R) and then we based this analysis on sequence comparisons and structural similarity using in silico methods and docking processes, to design a suitable inhibitor molecule. The ligand 3-{(4S)-5-{[(1R)-1-cyclohexylethyl]amino}-4-[(5S)-5-(prop-2-en-1-yl) cyclopent-1-en-1-yl]-1,4- dihydro-7H-pyrrolo[2,3-d] pyrimidin-7-yl}-1,2-dideoxy-b-L-erythro-hex-1-en-3-ulofuranosyl binds to the protein with a binding energy of -8.10 kcal and showed a drug likeness of 0.952 with no predicted health hazard. It can be utilized as a potent inhibitor of N. meningitidis pilus-mediated adhesion to human brain endothelial cells preventing meningeal colonization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据