4.7 Article

Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes

期刊

FIELD CROPS RESEARCH
卷 223, 期 -, 页码 137-149

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2018.02.029

关键词

Chlorophyll fluorescence; Heat stress; Interactive effect; Photosynthesis; Triticum aestivum; Water use efficiency

类别

资金

  1. Ministry of Education, Youth and Sports of the Czech Republic within the National Programme for Sustainability [LO1415, CZ.02.1.01/0.0/0.0/16_013/0001609]

向作者/读者索取更多资源

Terrestrial ecosystems are expected to experience more intense and longer drought and heat-waves in the future. How these environmental factors and their interaction influence photosynthetic activity and water use efficiency remains, however, an open question. Since the photosynthetic activity determines yield response, we investigated gas-exchange and chlorophyll fluorescence traits of flag leaves in four winter wheat cultivars, including two genotypes widely grown in Central Europe and two genotypes considered as drought tolerant. Pot grown plants were cultivated under natural field conditions until anthesis (DC 61). Subsequently, the plants were exposed to a set of temperature regimes with daily maxima of 26-41 degrees C (temperature treatment) and maximum soil water holding capacity above 70% and below 30% (drought treatment) using laboratory growth chambers. Primary photochemical reactions after 7 and 14 days of acclimation, measured as maximum quantum yield of photosystem II photochemistry and total chlorophyll content, showed typical interactions of temperature and water availability resulting in an amplified response under combined influence of drought and temperatures above 35 degrees C. In contrast, drought and temperature treatment had only minor effects on content of epidermal flavonols. A dominant effect of drought over temperature on stomatal conductance (G(Smax)) was observed. Although substantial genotype-specific responses were found, reduced stomatal conductance resulted in significant decrease in light-saturated rates of CO2 assimilation (A(max)) in all genotypes studied. The G(Smax)-A(max) relationship, however, revealed limitation of CO2 uptake by other, non-stomatal processes at temperatures above 32 degrees C, particularly in the sensitive genotypes. Strong interaction of combined drought and temperature treatments was found on water use efficiency (WUE). Decline in WUE with increasing temperature was steeper in water-deficit than well-watered plants of all genotypes studied. Our results thus document a strong interactive effect of elevated temperature and drought on photosynthetic carbon uptake. Detected thresholds of sensitivity to combined drought and heat stress will contribute to improved modelling of wheat growth and production under expected future climate conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据