4.5 Article

An Investigation on Wear and Dynamic Mechanical behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications

期刊

FIBERS AND POLYMERS
卷 19, 期 2, 页码 403-415

出版社

KOREAN FIBER SOC
DOI: 10.1007/s12221-018-7759-6

关键词

Sliding wear; Sliding friction; DMA; Natural fiber; Epoxy; SEM

向作者/读者索取更多资源

Bio-materials have ignited a quest among research fraternity to be used in every possible field of applications like automobile, sports, medical, civil and textile industry. Application spectrum of natural fiber reinforced polymer composites is spreading globally in every field of engineering having structural and tribological applications. The present work investigates the tribological performance of regionally available inexpensive plant based natural fiber reinforced polymer composites. In this work, three different types of natural fibers (jute, hemp, and flax) were reinforced with epoxy matrix to fabricate natural fiber reinforced polymer composites (NFRP) and their hybrid composites (jute/hemp/Epoxy, hemp/flax/epoxy and jute/hemp/flax/epoxy) using hand-layup technique. Tribological performance of the developed bio-composites were evaluated in terms of frictional characteristics and sliding wear under dry contact condition at different process parameters, such as applied load (10-50 N), sliding speed (1-5 m/s) and sliding distance (1000-2000 m). Experimental results of wear analysis confirmed that incorporation of natural fibers into epoxy polymer matrix significantly improved the wear behavior of the developed NFRP composites in comparison to neat epoxy polymer. Among all the developed composites, jute/epoxy composite achieved the highest coefficient of friction, frictional force and specific wear rate. Dynamic mechanical analysis (DMA) was also analyzed to evaluate the viscoelastic behavior of the developed composites. The surface morphology of samples after wear test was examined by scanning electron microscopy to investigate and propose the possible wear mechanism of the developed composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据