4.2 Article

Properties of Feshbach and shape-resonances in ozone and their role in recombination reactions and anomalous isotope effects

期刊

FARADAY DISCUSSIONS
卷 212, 期 -, 页码 259-280

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8fd00089a

关键词

-

资金

  1. NSF Atmospheric Chemistry Program, Division of Atmospheric Sciences [AGS-1252486]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Computational modelling of recombination reactions that form ozone require the inclusion of several quantum mechanical effects such as symmetry, zero-point energy, scattering resonances and tunneling. Major elements of theory for rigorous description of this process are reviewed, with emphasis on interpreting the famous anomalous isotope effect due to substitutions of O-18. Three reaction pathways, for the formation of symmetric and asymmetric isotopologues of ozone, are introduced and a hierarchy of theory levels is outlined. Lower levels of theory are used to account for the effects of symmetry, isotope mass, rotational excitations and vibrational zero-point energy differences. They happen to be equivalent to statistical descriptions of the process and do not show anomalous isotope effects. Properties of scattering resonances should be included at the next level of theory, and may finally explain the isotope effect. Shape resonances, trapped behind the centrifugal barrier and populated by tunneling, can be studied by neglecting couplings between the diabatic ro-vibrational states of the system. Inclusion of these couplings enables the formation of Feshbach resonances. Accurate calculations using hyper-spherical coordinates are performed to obtain resonance energies, lifetimes and wavefunctions. Differences between the shape resonances and Feshbach resonances are emphasized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据