4.5 Article

Greater neural responses to trajectory errors are associated with superior force field adaptation in older adults

期刊

EXPERIMENTAL GERONTOLOGY
卷 110, 期 -, 页码 105-117

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2018.05.020

关键词

Aging; Electroencephalography (EEG); Event related potential; Error-related negativity; Feedback-related negativity; Sensorimotor adaptation

资金

  1. UQ Postdoctoral Research Fellowship
  2. Australian Research Council Future Fellowship
  3. Endeavour Research Fellowship

向作者/读者索取更多资源

Although age-related declines in cognitive, sensory and motor capacities are well documented, current evidence is mixed as to whether or not aging impairs sensorimotor adaptation to a novel dynamic environment. More importantly, the extent to which any deficits in sensorimotor adaptation are due to general impairments in neural plasticity, or impairments in the specific processes that drive adaptation is unclear. Here we investigated whether there are age-related differences in electrophysiological responses to reaching endpoint and trajectory errors caused by a novel force field, and whether markers of error processing relate to the ability of older adults to adapt their movements. Older and young adults (N = 24/group, both sexes) performed 600 reaches to visual targets, and received audio-visual feedback about task success or failure after each trial. A velocity-dependent curl field pushed the hand to one side during each reach. We extracted ERPs time-locked to movement onset [kinematic error-related negativity (kERN)], and the presentation of success/failure feedback [feedback error-related negativity (FERN)]. At a group level, older adults did not differ from young adults in the rate or extent of sensorimotor adaptation, but EEG responses to both trajectory errors and task errors were reduced in the older group. Most interestingly, the amplitude of the kERN correlated with the rate and extent of sensorimotor adaptation in older adults. Thus, older adults with an impaired capacity for encoding kinematic trajectory errors also have compromised abilities to adapt their movements in a novel dynamic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据